
Vault/Consul Monitoring Guide
Author: Todd Radel

 0.1Version:
 10 May 2018Date:

Table of Contents

1 Introduction
1.1 Approaches to application monitoring
1.2 Survey of available time-series monitoring solutions

1.2.1 Grafana/Graphite
1.2.2 TICK Stack
1.2.3 Amazon Cloudwatch
1.2.4 Prometheus
1.2.5 DataDog
1.2.6 Other options

1.3 Monitoring solution used in this guide
1.4 Sample project accompanying the guide

2 Monitoring Vault and Consul with Telegraf, InfluxDB, and Grafana
2.1 Setting up a server with InfluxDB and Grafana

2.1.1 Provisioning a new server
2.1.2 Installing InfluxDB
2.1.3 Installing Grafana
2.1.4 Securing the installation

2.2 Installing and configuring Telegraf agents
2.2.1 Installing Telegraf
2.2.2 Configuring Telegraf

2.3 Configuring Vault and Consul to send telemetry data to Telegraf
2.3.1 Configuring Consul agents
2.3.2 Configuring Vault

2.4 Setting up the database connection in Grafana
2.4.1 Configuring the data source

2.5 Importing the sample dashboards
3 Guide to important metrics

3.1 Consul server metrics
3.1.1 Transaction timing
3.1.2 Leadership changes
3.1.3 Autopilot
3.1.4 Memory usage
3.1.5 Garbage collection
3.1.6 File descriptors
3.1.7 CPU usage
3.1.8 Network activity
3.1.9 Disk activity

3.2 Vault server metrics
3.2.1 Request processing
3.2.2 Consul response time
3.2.3 Write-ahead log processing
3.2.4 Leadership changes
3.2.5 Seal status
3.2.6 Memory usage
3.2.7 Garbage collection
3.2.8 File descriptors
3.2.9 CPU usage
3.2.10 Network activity
3.2.11 Disk activity

4 Future topics
5 Contributing to the guide

Introduction

If you're going to rely on any enterprise application in production, there are certain things you expect: the ability to run backups, to fail over to a
standby system in case the primary fails ... and the ability to monitor the application to make sure it's healthy, or alert you when it isn't.



1.  

2.  

3.  

This guide will show you how to monitor Vault and Consul. The main topics include:

How to set up a monitoring stack (in this case: Telegraf, InfluxDB, and Grafana).
How to configure Vault and Consul to send telemetry to a monitoring agent.
Which metrics are important to monitor, and why.

Approaches to application monitoring

There are three main ways to monitor the health of an application:

Time-series telemetry data. This involves capturing metrics from the application, storing them in a special database designed for that
purpose, and analyzing trends in the data over time.

Examples: Grafana, CloudWatch, DataDog, Circonus.
Log analytics. This means capturing log files from the system and the application, extracting useful signals from the text, and then
analyzing that data.

Examples: Splunk, ELK, SumoLogic.
Active health checks. This involves active methods of connecting to the application and interacting with it to ensure it is responding
properly.

Examples: Nagios, Sensu, Keynote.

All of these methods have their place, but this guide focuses on the capture and analysis of time-series telemetry. Future versions of this guide
might extend to the other areas described above.

Survey of available time-series monitoring solutions

Vault and Consul use the library to export telemetry. Currently they support the following options: go-metrics 

Circonus
DataDog's DogStatsd
Statsite
Statsd

Note that DataDog's agent and Statsite are implementations of statsd, so the last 3 options are nearly the same thing.

Once the metrics reach your statsd-compatible agent, they need to be forwarded somewhere so they can be stored and displayed. There are
many options. This page discusses a few of the most popular.

Grafana/Graphite

Graphite is an open-source tool for storing and graphing time-series data. It doesn't support dashboards or alerts, but can be layered on Grafana 
top of it. 

TICK Stack

TICK is an acronym for Telegraf, InfluxDB, Chronograf, and Kapacitor. Together they provide a full solution for storing, displaying, and alerting on
time-series data. It is available in both open-source and commercial versions from InfluxData.

Telegraf provides a statsd-compatible host agent.
InfluxDB is the time-series database.
Chronograf is a dashboarding engine roughly similar to Grafana.
Kapacitor provides alerting.

Amazon Cloudwatch

CloudWatch is Amazon's solution for monitoring AWS cloud resources. It handles both time-series data and log files. If you are running Vault and
Consul in AWS, it can be an easy choice to make.

One limitation of CloudWatch is that time-series data is only available at a 1-minute granularity and only for 15 days. After that, the data is rolled
up into 5-minute and one-hour buckets. For more details, see the . CloudWatch FAQ

Prometheus

https://github.com/armon/go-metrics
https://graphiteapp.org/
https://grafana.com/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/faqs/


Prometheus is a modern alternative to statsd-compatible daemons, using lightweight HTTP servers called "exporters" which are then scraped by
a Prometheus server. Prometheus is increasingly popular in the containerized world.

Rather than the UDP-based "fire and forget" mechanism used by statsd, Prometheus relies on lightweight HTTP servers called "exporters" which
are then scraped by a Prometheus server. There is a that you could use in place of Telegraf later in this guide. statsd exporter 

DataDog

DataDog is a commercial SaaS solution. They provide a customized statsd agent,  , that includes several vendor-specific extensions,DogStatsd
mostly tagging and service check results.

If you use DataDog, you would use their DogStatsd in place of Telegraf later in this guide.

Other options

There are many other commercial and open-source choices. Configuring those is beyond the scope of this document.

Now that you know what options are available, we can reveal the . Architecture chosen for this guide

Monitoring solution used in this guide

I've chosen to use Telegraf, InfluxDB, and Grafana to demonstrate how to monitor Vault and Consul.

Telegraf is a lightweight but powerful monitoring agent that is compatible with statsd.
InfluxDB is a highly performant time-series database.
Grafana takes the collected data and builds pretty dashboards (and does some basic alerting).

Why those tools in particular?

They're open-source, popular, and well understood.
They're compatible with the most popular flavors of Linux, and can even be run in containers if desired.
They're easy to set up.

Since I'm using Telegraf and InfluxDB already, why not build the whole TICK stack and use instead of Grafana? As of current writing, Chronograf 
Chronograf's dashboards aren't quite as configurable or pretty as Grafana's, but I plan to keep an eye on the project as it evolves. Feel free to try
it out yourself and see what you think.

The next few sections of this guide will explain how to set up a server with InfluxDB and Grafana, and how to install Telegraf agents on each of
your Vault and Consul hosts. When you're done, it will look like this:

https://prometheus.io/
https://github.com/prometheus/statsd_exporter
https://www.datadoghq.com/
https://docs.datadoghq.com/developers/dogstatsd/
https://github.com/hashicorp/vault-consul-monitoring/wiki/Architecture-chosen-for-this-guide
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/influxdb/
https://grafana.com/
https://www.influxdata.com/time-series-platform/chronograf/


The Telegraf agent on each host listens for statsd packets on port 8125/udp, converts the data into JSON format, and sends it to InfluxDB. The
dashboards we create in Grafana then query that data from InfluxDB and produce colorful charts that are easy to understand.

Sample project accompanying the guide

Accompanying this guide is a that sets up a simple stack for you to test out the concepts described in this guide. The stack Github repository 
includes:

Three Vault nodes ( , , and ).vault0  vault1  vault2
Three Consul nodes ( , , and ).consul0  consul1  consul2
A Grafana/InfluxDB server ( ).statsbox

The project uses HashiCorp to set up the entire stack on your laptop, using  to host the VM's. You should have at least 16GB Vagrant   VirtualBox
of RAM to run the stack.

Once the stack is running, you can unseal Vault, then log in to Grafana and import the sample dashboards. If you want to see how the
dashboards look when Vault is under heavy load, I suggest using the sister project to generate some traffic to Vault. Vault load test 

Monitoring Vault and Consul with Telegraf, InfluxDB, and Grafana

Setting up a server with InfluxDB and Grafana

Provisioning a new server

 Warning
Do not install InfluxDB and Grafana on the same servers that are already running Vault or Consul. Set them up on a new server
instead.

Recommended hardware specs for running InfluxDB and Grafana depend on whether you have a single Vault/Consul cluster, or multiple clusters
that will be sending metrics to InfluxDB:

Single Cluster Multiple Clusters

CPU cores 2 to 4 4 to 8

RAM 2 GB to 4 GB 8 GB

IOPS 300 1000

AWS instance type t2.medium t2.large or m4.large

GCP instance type n1-standard-1 n1-standard-2

InfluxDB and Grafana can run on most flavors of Linux. Windows is not recommended.

Installing InfluxDB

Instructions can be found on the . Brief instructions for Ubuntu Server are reproduced here. InfluxDB web site
curl -sL https://repos.influxdata.com/influxdb.key  sudo apt-key add -|

 /etc/lsb-releasesource
   sudo teeecho deb https://repos.influxdata.com/   stable" ${DISTRIB_ID,,} ${DISTRIB_CODENAME} " |

/etc/apt/sources.list.d/influxdb.list

sudo apt-get update  sudo apt-get install influxdb&&
sudo systemctl  influxdbenable
sudo systemctl start influxdb

Installing Grafana

Grafana also has pretty comprehensive install guides , but again we present simple instructions for installing on Ubuntu servers: available

https://github.com/hashicorp/vault-consul-monitoring
https://www.vagrantup.com/
https://www.virtualbox.org/
https://github.com/hashicorp/vault-load-testing
https://docs.influxdata.com/influxdb/v1.5/introduction/installation/
http://docs.grafana.org/installation/


curl -sL https://packagecloud.io/gpg.key  sudo apt-key add -|
   sudo teeecho deb https://packagecloud.io/grafana/stable/debian/ jessie main" " |

/etc/apt/sources.list.d/grafana.list
apt-get update  apt-get -y install grafana&&

sudo apt-get update  sudo apt-get install grafana&&
systemctl  grafana-serverenable
systemctl restart grafana-server

Securing the installation

Installing and configuring Telegraf agents

Installing Telegraf

Installing Telegraf is straightforward on most Linux distributions with . On Ubuntu, for example: step-by-step instructions
 add the influxdata signing key#

curl -sL https://repos.influxdata.com/influxdb.key  sudo apt-key add -|

 configure a package repo#
 /etc/lsb-releasesource

   sudo teeecho deb https://repos.influxdata.com/   stable" ${DISTRIB_ID,,} ${DISTRIB_CODENAME} " |
/etc/apt/sources.list.d/influxdb.list

 install Telegraf and start the daemon#
sudo apt-get update  sudo apt-get install telegraf&&
sudo systemctl  telegrafenable
sudo systemctl start telegraf

Configuring Telegraf

Besides acting as a statsd agent, Telegraf can collect additional metrics of its own. Telegraf itself ships with a wide range of to input plugins 
collect data from lots of sources. We're going to enable some of the most common ones to monitor CPU, memory, disk I/O, networking, and
process status.

The file starts with global options: telegraf.conf 
[agent]
   = interval 10s" "
   = flush_interval 10s" "
   = falseomit_hostname

We set the default collection interval to 10 seconds and ask Telegraf to include a tag in each metric. host 

As mentioned above, Telegraf also allows you to set additional tags on the metrics that pass through it. In this case, we are adding tags for the
server role and datacenter. We can then use these tags in Grafana to filter queries (for example, to create a dashboard showing only servers with
the role, or only servers in the datacenter). consul-server   us-east-1 
[global_tags]
   = role consul-server" "
   = datacenter us-east-1" "

Next, we set up a statsd listener on UDP port 8125, with instructions to calculate percentile metrics and to parse DogStatsd-compatible tags,
when they're sent:

By default, InfluxDB listens on port 8086 with no authentication. Once you have monitoring up and running as described in this guide,
you will probably want to take steps to : secure your InfluxDB installation

Restricting access via firewall or AWS security groups
Configuring InfluxDB for HTTPS
Enabling authentication

Don't forget to update with the appropriate options too. telegraf.conf 

https://docs.influxdata.com/telegraf/v1.6/introduction/installation/
https://docs.influxdata.com/telegraf/v1.6/plugins/inputs/
https://docs.influxdata.com/influxdb/v1.5/administration/security/


[[inputs.statsd]]
   = protocol udp" "
   = service_address :8125" "
   = truedelete_gauges
   = truedelete_counters
   = truedelete_sets
   = truedelete_timings
   = [90]percentiles
   = metric_separator _" "
   = trueparse_data_dog_tags
   = 10000allowed_pending_messages
   = 1000percentile_limit

The full reference to all the available statsd-related options in Telegraf is . here

Now we can configure inputs for things like CPU, memory, network I/O, and disk I/O. Most of them don't require any configuration, but make sure
the list in matches the interface names you see in . interfaces   inputs.net   ifconfig
[[inputs.cpu]]
   = truepercpu
   = truetotalcpu
   = falsecollect_cpu_time

][[inputs.disk]
   mount_points = ["/"]#
   ignore_fs = ["tmpfs", "devtmpfs"]#

][[inputs.diskio]
   devices = ["sda", "sdb"]#
   skip_serial_number = false#

][[inputs.kernel]
   no configuration#

][[inputs.linux_sysctl_fs]
   no configuration#

][[inputs.mem]
   no configuration#

][[inputs.net]
   = [ ]interfaces enp0s*" "

][[inputs.netstat]
   no configuration#

][[inputs.processes]
   no configuration#

][[inputs.procstat]
   = pattern (consul|vault)" "

][[inputs.swap]
   no configuration#

][[inputs.system]
   no configuration#

Another useful plugin is the plugin, which reports metrics for processes you select: procstat 
[[inputs.procstat]]
   = pattern (consul|vault)" "

Finally, Telegraf even includes a to monitor Consul agents. plugin 
[[inputs.consul]]
   = address localhost:8500" "
   = scheme http" "

Putting it all together, you can see complete examples for and hosts. While you're at it, you may as well set up telegraf.conf   Consul   Vault
monitoring on the InfluxDB/Grafana server too. of how you could do that. Here's an example 

After you edit the , don't forget to restart the Telegraf agent: telegraf.conf

systemctl restart telegraf

https://github.com/influxdata/telegraf/tree/release-1.6/plugins/inputs/statsd
http://inputs.net
https://github.com/influxdata/telegraf/tree/release-1.6/plugins/inputs/procstat
https://github.com/influxdata/telegraf/tree/release-1.6/plugins/inputs/consul
https://github.com/hashicorp/vault-consul-monitoring/blob/master/consul/telegraf.conf
https://github.com/hashicorp/vault-consul-monitoring/blob/master/vault/telegraf.conf
https://github.com/hashicorp/vault-consul-monitoring/blob/master/statsbox/telegraf.conf


Configuring Vault and Consul to send telemetry data to Telegraf

Configuring Consul agents

Asking Consul to send telemetry to Telegraf is as simple as adding a section to your agent configuration: telemetry 
{
  : {telemetry" "
    : ,dogstatsd_addr" " localhost:8125" "
    : disable_hostname" " true
  }
}

As you can see, we only need to specify two options. The specifies the hostname and port of the statsd daemon. dogstatsd_addr 

Note that we specify DogStatsd format instead of plain statsd, which tells Consul to send with each metric. Tags can be used by Grafana to tags
filter data on your dashboards (for example, displaying only the data for which . Telegraf is compatible with the DogStatsd role=consul-server
format and allows us to add our own tags too, as you'll see later.

The second option tells Consul not to insert the hostname in the names of the metrics it sends to statsd, since the hostnames will be sent as tags.
Without this option, the single metric would become multiple metrics: consul.raft.apply 

consul.server1.raft.apply
    consul.server2.raft.apply
    consul.server3.raft.apply

If you are using a different agent (e.g. Circonus, Statsite, or plain statsd), you can find the configuration reference . here

Configuring Vault

Similar to Consul, configuring Vault to send us telemetry is painless. Just add one stanza to your Vault config:
telemetry {
      :dogstatsd_addr = "localhost 8125"
    disable_hostname = true
}

The options are the same as they were for Consul. The full reference can be found . here

Setting up the database connection in Grafana

If everything is working, you should now be able to pull up the Grafana UI, configure the connection to InfluxDB, and start exploring. If you are
using the sample project, the UI is forwarded from the Grafana server to . Log in as "admin" with password "admin". http://localhost:3000

Configuring the data source

Before we can create dashboards, we need to tell Grafana where to get data from. From the Grafana home screen, click "Create your first data
source", or go to the sidebar menu and choose > and then click "Add a data source". Configuration   Data Sources 

Fill in the settings as follows:

Name: any name you like.
Default: checked.
Type: InfluxDB.
HTTP:

URL: http://localhost:8086
Access: direct

Auth: leave all options unchecked.
Advanced HTTP Settings: leave options at defaults.
InfluxDB Details:

Database: telegraf
User: telegraf
Password: telegraf

Min time interval: 10s (matches the Telegraf agent setting) interval 

Make sure your screen looks like this , then click "Save & Test". You should see messages indicating that "Data source is working" and screenshot
"Data source saved". If not, double check your entries.

https://docs.datadoghq.com/getting_started/tagging/
https://www.consul.io/docs/agent/options.html#telemetry
https://www.vaultproject.io/docs/configuration/telemetry.html
http://localhost:3000/
http://localhost:8086/
https://github.com/hashicorp/vault-consul-monitoring/blob/master/images/configure_data_source.png


1.  
2.  
3.  
4.  
5.  
6.  
7.  

Importing the sample dashboards

We have provided sample dashboards for Vault and Consul . To import them into your own Grafana server: here

Download the dashboards to your machine.
Open the Grafana web interface. In the sample project, this would be at . http://localhost:3000
Click the "plus" icon to open the Create menu, and select Import . (screenshot)
Click the green "Upload JSON File" button.
Browse to the first dashboard file and upload it.
From the dropdown list, select the data source you created earlier . (screenshot)
Click "Import".

Now you should be able to see beautiful dashboards full of Vault and Consul metrics. If there are errors, you might need to customize each
dashboard slightly. Depending on the versions of Vault and Consul you have, some metrics may not be available or may have been renamed.

https://github.com/hashicorp/vault-consul-monitoring/tree/master/dashboards
http://localhost:3000/
https://github.com/hashicorp/vault-consul-monitoring/blob/master/images/grafana_create_menu.png
https://github.com/hashicorp/vault-consul-monitoring/blob/master/images/select_data_source.png


Guide to important metrics

Vault and Consul provide reference documentation for all of the metrics they export in their telemetry (Vault and Consul ). Those pages here  here
list and describe every metric that is available, but they don't do a good job of explaining which ones are most important to monitor, why they're
important, or what thresholds you might want to set for alerts.

In this section, we try to demystify the Vault and Consul telemetry a bit, and tell you what's most important to keep an eye on.

Consul server metrics

Transaction timing

Metric Name Description

consul.kvs.apply This measures the time it takes to complete an update to the KV store.

consul.txn.apply This measures the time spent applying a transaction operation.

consul.raft.apply This counts the number of Raft transactions occurring over the interval.

consul.raft.commitTime This measures the time it takes to commit a new entry to the Raft log on the leader.

Why they're important: Taken together, these metrics indicate how long it takes to complete write operations in various parts of the Consul
cluster. Generally these should all be fairly consistent and no more than a few milliseconds. Sudden changes in any of the timing values could be
due to unexpected load on the Consul servers, or due to problems on the servers themselves.

What to look for: Deviations (in any of these metrics) of more than 50% from baseline over the previous hour.

Leadership changes

Metric Name Description

https://www.vaultproject.io/docs/internals/telemetry.html
https://www.consul.io/docs/agent/telemetry.html


consul.raft.leader.lastContact Measures the time since the leader was last able to contact the follower nodes when checking its
leader lease.

consul.raft.state.candidate This increments whenever a Consul server starts an election.

consul.raft.state.leader This increments whenever a Consul server becomes a leader.

Why they're important: Normally, your Consul cluster should have a stable leader. If there are frequent elections or leadership changes, it would
likely indicate network issues between the Consul servers, or that the Consul servers themselves are unable to keep up with the load.

What to look for: If > 0, or > 0, or greater than 200ms. candidate   leader   lastContact 

Autopilot

Metric Name Description

consul.autopilot.healthy This tracks the overall health of the local server cluster. If all servers are considered healthy by Autopilot,
this will be set to 1. If any are unhealthy, this will be 0.

Why it's important: Obviously, you want your cluster to be healthy.

What to look for: Alert if is 0. healthy 

Memory usage

Metric Name Description

consul.runtime.alloc_bytes This measures the number of bytes allocated by the Consul process.

consul.runtime.sys_bytes This is the total number of bytes of memory obtained from the OS.

mem.total Total amount of physical memory (RAM) available on the server.

mem.used_percent Percentage of physical memory in use.

swap.used_percent Percentage of swap space in use.

Why they're important: Consul keeps all of its data in memory. If Consul consumes all available memory, it will crash. You should also monitor
total available RAM to make sure some RAM is available for other processes, and swap usage should remain at 0% for best performance.

What to look for: If exceeds 90% of , if is over 90%, or if is greater sys_bytes   total_bytes  mem.used_percent   swap.used_percent 
than 0.

Garbage collection

Metric Name Description

consul.runtime.total_gc_pause_ns Number of nanoseconds consumed by stop-the-world garbage collection (GC) pauses since
Consul started.

Why it's important: As mentioned above, GC pause is a "stop-the-world" event, meaning that all runtime threads are blocked until GC
completes. Normally these pauses last only a few nanoseconds. But if memory usage is high, the Go runtime may GC so frequently that it starts
to slow down Consul.

What to look for: Warning if exceeds 2 seconds/minute, critical if it exceeds 5 seconds/minute. total_gc_pause_ns 

NOTE: total_gc_pause_ns is a cumulative counter, so in order to calculate rates (such as GC/minute), you will need to apply a function such
as . non_negative_difference

File descriptors

Metric Name Description

linux_sysctl_fs.file-nr Number of file handles being used across all processes on the host.

https://docs.influxdata.com/influxdb/v1.5/query_language/functions/#non-negative-difference


linux_sysctl_fs.file-max Total number of available file handles.

Why it's important: Practically anything Consul does -- receiving a connection from another host, sending data between servers, writing
snapshots to disk -- requires a file descriptor handle. If Consul runs out of handles, it will stop accepting connections. See for the Consul FAQ 
more details.

By default, process and kernel limits are fairly conservative. You will want to increase these beyond the defaults.

What to look for: If exceeds 80% of . file-nr   file-max

CPU usage

Metric Name Description

cpu.user_cpu Percentage of CPU being used by user processes (such as Vault or Consul).

cpu.iowait_cpu Percentage of CPU time spent waiting for I/O tasks to complete.

Why they're important: Consul is not particularly demanding of CPU time, but a spike in CPU usage might indicate too many operations taking
place at once, and is critical -- it means Consul is waiting for data to be written to disk, a sign that Raft might be writing snapshots to iowait_cpu 
disk too often.

What to look for: if greater than 10%. cpu.iowait_cpu 

Network activity

Metric Name Description

net.bytes_recv Bytes received on each network interface.

net.bytes_sent Bytes transmitted on each network interface.

Why they're important: A sudden spike in network traffic to Consul might be the result of a misconfigured Vault client causing too many
requests.

What to look for: Sudden large changes to the metrics (greater than 50% deviation from baseline). net 

NOTE: The metrics are counters, so in order to calculate rates (such as bytes/second), you will need to apply a function such as net   non_negativ
.e_difference

Disk activity

Metric Name Description

diskio.read_bytes Bytes read from each block device.

diskio.write_bytes Bytes written to each block device.

Why they're important: Since Consul keeps everything in memory, there normally isn't much disk activity. If the Consul host is writing a lot of
data to disk, it probably means that Consul is under heavy write load, and consequently is checkpointing Raft snapshots to disk frequently. It
could also mean that debug/trace logging has accidentally been enabled in production, which can impact performance. Too much disk I/O can
cause the rest of the system to slow down or become unavailable, as the kernel spends all its time waiting for I/O to complete.

What to look for: Sudden large changes to the metrics (greater than 50% deviation from baseline, or more than 3 standard deviations diskio 
from baseline).

NOTE: The metrics are counters, so in order to calculate rates (such as bytes/second), you will need to apply a function such as diskio   non_ne
.gative_difference

Vault server metrics

Request processing

https://www.consul.io/docs/faq.html#q-does-consul-require-certain-user-process-resource-limits-
https://docs.influxdata.com/influxdb/v1.5/query_language/functions/#non-negative-difference
https://docs.influxdata.com/influxdb/v1.5/query_language/functions/#non-negative-difference
https://docs.influxdata.com/influxdb/v1.5/query_language/functions/#non-negative-difference
https://docs.influxdata.com/influxdb/v1.5/query_language/functions/#non-negative-difference


Metric Name Description

vault.core.handle_request Duration of requests handled by the Vault core.

Why it's important: This is the key measure of Vault's response time.

What to look for: Changes to the or fields that exceed 50% of baseline values, or more than 3 standard deviations above baseline. count   mean 

Consul response time

Metric Name Description

vault.consul.get Count and duration of operations against the Consul storage backend. GET 

vault.consul.put Count and duration of operations against the Consul storage backend. PUT 

vault.consul.list Count and duration of operations against the Consul storage backend. LIST 

vault.consul.delete Count and duration of operations against the Consul storage backend. DELETE 

Why they're important: These metrics indicate how long it takes for Consul to handle requests from Vault.

What to look for: Large deltas in the , , or fields. count  upper  90_percentile 

Write-ahead log processing

Metric Name Description

vault.wal.persistWALs Amount of time required to persist the Vault write-ahead logs (WAL) to the Consul backend.

vault.wal.flushReady Amount of time required to flush the Vault write-ahead logs (WAL) to the persist queue.

Why they're important: The Vault write-ahead logs (WALs) are used to replicate Vault between clusters. Surprisingly, the WAL's are kept even if
replication is not currently enabled. The WAL is purged every few seconds by a garbage collector. But if Vault is under heavy load, the WAL may
start to grow, putting pressure on Consul.

What to look for: If is over 500ms, or if is over 1000ms. flushReady   persistWALs 

Leadership changes

Metric Name Description

vault.core.leadership_lost Total duration of cluster leadership losses in a highly-available cluster.

Why it's important: There should not be a leadership change unless the leader crashes or becomes otherwise unavailable. While the other
servers elect a leader, Vault is unable to process any requests.

What to monitor: Any value greater than 0 should cause an alert condition.

Seal status

Metric Name Description

consul_health_checks[check_name="Vault Sealed Status"].passing Value of 1 indicates Vault is unsealed; 0 means sealed.

Why they're important: By default, Vault is sealed on startup, so if this value changes to 0 during the day, Vault has restarted for some reason.
And until it's unsealed, it won't answer requests from clients.

What to look for: A value of 0 being reported by any host.

NOTE: This metric is actually reported by the . Consul plugin to Telegraf

Memory usage

https://github.com/influxdata/telegraf/tree/master/plugins/inputs/consul


Metric Name Description

vault.runtime.alloc_bytes This measures the number of bytes allocated by the Vault process.

vault.runtime.sys_bytes This is the total number of bytes of memory obtained from the OS.

mem.total_bytes Total amount of physical memory (RAM) available on the server.

mem.used_percent Percentage of physical memory in use.

swap.used_percent Percentage of swap space in use.

Why they're important: Vault doesn't need as much memory as Consul, but if it does run out, it too will crash. You should also monitor total
available RAM to make sure some RAM is available for other processes, and swap usage should remain at 0% for best performance.

What to look for: If exceeds 90% of , if is over 90%, or if is greater sys_bytes   total_bytes  mem.used_percent   swap.used_percent 
than 0.

Garbage collection

Metric Name Description

vault.runtime.total_gc_pause_ns Number of nanoseconds consumed by stop-the-world garbage collection (GC) pauses since Vault
started.

Why it's important: As mentioned above, GC pause is a "stop-the-world" event, meaning that all runtime threads are blocked until GC
completes. Normally these pauses last only a few nanoseconds. But if memory usage is high, the Go runtime may GC so frequently that it starts
to slow down Vault.

What to look for: Warning if exceeds 2 seconds/minute, critical if it exceeds 5 seconds/minute. total_gc_pause_ns 

Additional notes: total_gc_pause_ns is a cumulative counter, so in order to calculate rates (such as GC/minute), you will need to apply a
function such as . non_negative_difference

File descriptors

Metric Name Description

linux_sysctl_fs.file-nr Number of file handles being used across all processes on the host.

linux_sysctl_fs.file-max Total number of available file handles.

Why it's important: Practically anything Vault does -- receiving a connection from another host, sending data between servers, writing snapshots
to disk -- requires a file descriptor handle. If Vault runs out of handles, it will stop accepting connections.

By default, process and kernel limits are fairly conservative. You will want to increase these beyond the defaults.

What to look for: If exceeds 80% of . file-nr   file-max

CPU usage

Metric Name Description

cpu.user_cpu Percentage of CPU being used by user processes (such as Vault or Consul).

cpu.iowait_cpu Percentage of CPU time spent waiting for I/O tasks to complete.

Why they're important: Encryption can place a heavy demand on CPU. If the CPU is too busy, Vault may have trouble keeping up with the
incoming request load. You may also want to monitor each CPU individually to make sure requests are evenly balanced across all CPUs.

What to look for: if greater than 10%. cpu.iowait_cpu 

Network activity

Metric Name Description

https://docs.influxdata.com/influxdb/v1.5/query_language/functions/#non-negative-difference


net.bytes_recv Bytes received on each network interface.

net.bytes_sent Bytes transmitted on each network interface.

Why they're important: A sudden spike in network traffic to Vault might be the result of a misconfigured client causing too many requests, or
additional load you didn't plan for.

What to look for: Sudden large changes to the metrics (greater than 50% deviation from baseline). net 

NOTE: The metrics are counters, so in order to calculate rates (such as bytes/second), you will need to apply a function such as net   non_negativ
.e_difference

Disk activity

Metric Name Description

diskio.read_bytes Bytes read from each block device.

diskio.write_bytes Bytes written to each block device.

Why they're important: Vault generally doesn't require too much disk I/O, so a sudden change in disk activity could mean that debug/trace
logging has accidentally been enabled in production, which can impact performance. Too much disk I/O can cause the rest of the system to slow
down or become unavailable, as the kernel spends all its time waiting for I/O to complete.

What to look for: Sudden large changes to the metrics (greater than 50% deviation from baseline, or more than 3 standard deviations diskio 
from baseline).

NOTE: The metrics are counters, so in order to calculate rates (such as bytes/second), you will need to apply a function such as diskio   non_ne
.gative_difference

Future topics

This guide will continue to be updated periodically. Future topics to be added may include:

Monitoring with , , or Prometheus  CloudWatch  TICK
Log monitoring with , CloudWatch, or the Splunk  ELK Stack

Contributing to the guide

If you have topics you'd like to see added, please create an issue in the GitHub repo. If you have material to contribute to the guide, please send 
us a pull request. And thank you in advance for helping make this guide even better!

Todd Radel
May 2018

https://docs.influxdata.com/influxdb/v1.5/query_language/functions/#non-negative-difference
https://docs.influxdata.com/influxdb/v1.5/query_language/functions/#non-negative-difference
https://docs.influxdata.com/influxdb/v1.5/query_language/functions/#non-negative-difference
https://docs.influxdata.com/influxdb/v1.5/query_language/functions/#non-negative-difference
https://prometheus.io/
https://aws.amazon.com/cloudwatch/
https://www.influxdata.com/time-series-platform/
https://www.splunk.com/
https://www.elastic.co/elk-stack
https://github.com/hashicorp/vault-consul-monitoring/issues/new
https://help.github.com/articles/creating-a-pull-request/

	Vault/Consul Monitoring Guide

